The L Boundary Value Problems on Lipschitz Domains

نویسنده

  • Zhongwei Shen
چکیده

Abstract. Let Ω be a bounded Lipschitz domain in R. We develop a new approach to the invertibility on L(∂Ω) of the layer potentials associated with elliptic equations and systems in Ω. As a consequence, for n ≥ 4 and 2(n−1) n+1 − ε < p < 2 where ε > 0 depends on Ω, we obtain the solvability of the L Neumann type boundary value problems for second order elliptic systems. The analogous results for the biharmonic equation are also established.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary Value Problems on Lipschitz Domains in R or C

The purpose of this note is to bring update results on boundary value problems on Lipschitz domains in R or C. We first discuss the Dirichlet problem, the Neumann problem and the d-Neumann problem in a bounded domain in R. These problems are the prototypes of coercive (or elliptic ) boundary value problems when the boundary of the domain is smooth. When the domain is only Lipschitz, solutions t...

متن کامل

Inverse positivity for general Robin problems on Lipschitz domains

It is proved that elliptic boundary value problems in divergence form can be written in many equivalent forms. This is used to prove regularity properties and maximum principles for problems with Robin boundary conditions with negative or indefinite boundary coefficient on Lipschitz domains by rewriting them as a problem with positive coefficient. It is also shown that such methods cannot be ap...

متن کامل

Linear Elliptic Boundary Value Problems with Non-smooth Data: Normal Solvability on Sobolev–Campanato Spaces

In this paper linear elliptic boundary value problems of second order with non-smooth data (L∞-coefficients, Lipschitz domains, regular sets, non-homogeneous mixed boundary conditions) are considered. It is shown that such boundary value problems generate Fredholm operators between appropriate Sobolev–Campanato spaces, that the weak solutions are Hölder continuous up to the boundary and that th...

متن کامل

Boundary-value problems for higher-order el- liptic equations in non-smooth domains

This paper presents a survey of recent results, methods, and open problems in the theory of higher order elliptic boundary value problems on Lipschitz and more general non-smooth domains. The main topics include the maximum principle and pointwise estimates on solutions in arbitrary domains, analogues of the Wiener test governing continuity of solutions and their derivatives at a boundary point...

متن کامل

Navier-Stokes Equations on Lipschitz Domains in Riemannian Manifolds

The Navier-Stokes equations are a system of nonlinear evolution equations modeling the flow of a viscous, incompressible fluid. One ingredient in the analysis of this system is the stationary, linear system known as the Stokes system, a boundary value problem (BVP) that will be described in detail in the next section. Layer potential methods in smoothly bounded domains in Euclidean space have p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006